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Reduction of the unitary group to its orthogonal or symplectic
subgroup: a unified approach based upon complementary
groups

C Quesneft

Physique Théorique et Mathématique CP 229, Université Libre de Bruxelles, Bd du
Triomphe, B1050 Brussels, Belgium

Received 28 January 1985

Abstract. A unified analysis of the state labelling problems for the d-row irreducible
representations of U(n), when reduced with respect to either its orthogonal subgroup O(n)
or its symplectic subgroup USp(n) (the latter in the even-n case), is carried out by using
appropriate metrics and the complementarity relationship between the groups O(n) and
Sp(2d, R), or USp(n) and SO*(2d). In this way, a recently proposed canonical solution
to the U(n) > O(n) state labelling problem is extended to the U(n) > USp(n) chain. This
shows the equivalence between both these internal state labelling problems and the external
state labelling problem for U(d), as expressed in Littlewood’s branching rules for U(n) >
O(n) and U(n) > USp(n).

1. Introduction

The construction of bases for the d-row irreducible representations (irreps) of the
unitary group U(n) is difficult when U(n) is reduced to its orthogonal or symplectic
subgroup, because the latter does not provide enough quantum numbers to completely
specify the states: this is the so-called state labelling problem.

In a series of papers (Deenen and Quesne 1983, Quesne 1984), a new solution to
the U(n) = O(n) state labelling problem was proposed. This solution, based upon the
complementarity relationship between the U(n) > O(n) and Sp(2d, R) = U(d) chains
(Moshinsky and Quesne 1971, Gross and Kunze 1977, Kashiwara and Vergne 1978),
was termed canonical because it reflects in a very simple way the reduction of the
internal state labelling problem for U(n) > O(n) to the external state labelling problem
for U(d), as expressed in Littlewood’s branching rule (1950), supplemented, when
necessary, with Newell’s modification rules (1951). It is not restricted to small values
of n or d, although its practical usefulness is limited by the need for an explicit
knowledge of some U(d) coupling and recoupling coefficients.

The aim of the present paper is to extend such a solution to the case of U(n) >
USp(n), where n is even. For such a purpose, we shall realise the generators of the
U(n) orthogonal and symplectic subgroups in terms of boson creation and annihilation
operators, defining them in a unified way by using appropriate metrics (Quesne 1985).
The previously obtained results for O(n) will then easily be transposed for USp(n),
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2676 C Quesne

provided we replace the Sp(2d, R) > U(d) chain by the SO*(2d) > U(d) one, com-
plementary with respect to U(n) > USp(n) (Gelbart 1979, Quesne 1985).

In §2, the unified treatment of the unitary group orthogonal and symplectic
subgroups, as well as their complementary groups, is reviewed. The reduction of U(n)
to O(n) or USp(n) is then analysed in § 3. In § 4, bases of the O(n) or USp(n) scalar
irreps, belonging to the carrier space of a U(n) d-row irrep, are constructed. They are
finally used in § 5 to solve the state labelling problem for U(n)=>0(n) or USp(n),
where arbitrary irreps of the subgroup are considered.

2. The orthogonal and symplectic subgroups of U(n) and their complementary groups

In a previous paper (Quesne 1985), the orthogonal and sympletic subgroups of U(n)
were treated in a unified way by introducing a metric g = ||g.||, satisfying the conditions
g¢ =1 and g = eg, where ~ stands for transposed, and € =+1 for O(n) and —1 for
USp(n). For the present purpose, it is convenient to make a definite choice for g. Let
us denote the n values of the indices 5, by v, v—1,...,1,—-1,...,—v+1, —v when

n=2v,andn=p,v-1,...,1,0,-1,...,—v+1, —vwhen n=2r+1, and let us choose
g=1, forO(n),n=2vor2v+1
o, 1,
= (—I_V Ov) for USp(n), n=2v. 2.1

Here I, is the k X k matrix with +1 on the minor diagonal, and 0 elsewhere. We can
therefore write

st = a'sas,—t (22)

where o, is equal to 1 for O(n), and to the sign of s for USp{(n).

To realise the U(n) d-row irreps, we need at least dn boson creation and annihilation
operators (Baird and Biedenharn 1963, Moshinsky 1963). Let us denote them by 7,
and &, i=1,...,d, s=1,..., n, respectively. In terms of the U(n) generators

Cy= é‘,‘ Niskin (2.3)
those of O(n) and USp(n) are defined by

Ay=0C_,—eoC. ,=—¢eA;= ea’,a,(A_,,_s)T (2.4)
and their commutation relations are given by
(A Avr]= 008y Ay + 0,8y Ay + 0385 _ Ay + 008 Ay 2.5)

We can take as independent generators the operators A, where s>t for O(n) and
s=t for USp(n). They separate into the following three subsets:

(i) A, s=vy,...,1, (2.6a)
(ii) A, s>1t>—s for O(n), and s=t>—s for USp(n) (2.6b)
(iii) >, —t>s>t for O(n), and —t>s=t for USp(n)

respectively made of the weight, raising and lowering generators.
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To construct bases for the d-row irreps of U(n), reduced to O(n) or USp(n), it is
convenient to consider the complementary groups of U(n), and O(n) or USp(n),
contained in the group Sp(2dn, R) generated by all bilinear operators in 7; and &;
(Moshinsky and Quesne 1970, Howe 1979). For U(n), it is the group U(d) (Moshinsky
1963), whose generatorst are defined by

v

Cy= X muks 27
and are the weight, raising and lowering generators according to i =j, i <j, and i>}.
For O(n) and USp(n), the complementary groups are respectively the groups Sp(24d, R)
and SO*(2d) (Moshinsky and Quesne 1971, Gross and Kunze 1977, Kashiwara and
Vergne 1978, Gelbart 1979, Quesne 1985}, both generated by the operators

D; = Z Usni:nj,—s

D, =zs: . (2.8)
and

E;=3 Z (Misys + &sMis) = Cyy + 308y,
The latter satisfy the following commutation relations:

[Ey, E] = 8uEy— 8,4Ey [D}, D} =[Dy, Du]=0

[Ej, Di]=8yDy+8:Dy;  [Ej Dyl=—8uD;— 8Dy (2.9)

[ Dy, Diy]= 84E;; + e8,Ey; + e84 Ey; + 8,Ey;
and their symmetry and Hermiticity properties are given by

D};=eD}, D, =D (2.10)
and

(D})'=D; (E;)" = E;. (2.11)

We can take as independent generators all the operators E;;, as well as those operators
D and D for which i=<j for Sp(2d, R), or i <j for SO*(2d). They separate into the
following three subsets:

(i) E, i=1,...,d (2.12a)
(ii) Ej i<j
Dj; i<j for Sp(2d, R) and i <j for SO*(2d) (2.12b)
(iil) Ey i>j
D; i<j for Sp(2d, R) and i <j for SO*(2d) (2.12¢)

respectively made of the weight, raising and lowering generators.
With the chains

U{n)>0(n) and U(n)>USp(n) (2.134, b)

T In fact, the U(n) and U(d) subgroups of Sp(2dn, R) are respectively generated by the operators E,, =
139 (mi&i + E4mis), and E;, which only differ from C;, and C;; in some irrelevant constants, 3d8,, and %n&,,-.
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we can therefore respectively associate the complementary chains
Sp(2d, R) > U(d) and SO*(2d)>U(d). (2.144, b)

Within either irrep ((1/2)%") or ((1/2)“*7'3/2) of Sp(2dn, R), the irreps of U(n) and
U(d) are characterised by the same partition [h, ... h;]. Those of Sp(2d, R) and
SO*(2d) are positive discrete series, specified by their lowest weight (A4 +in..0, A0+
in), where (A,...A,) is the partition characterising the irreps of O(n) and USp(n),
respectively (it will be assumed that d < » =[3n] throughout this paper). The lowest
weight state |Lws) of the Sp(2d, R) and SO*(2d) irreps satisfies the following system
of equations:

DylLws)=0
EjlLws)=0 i>j (2.15)
EulLws) = (Ags1- +%")|LW5>-

In the reduction of the Sp(2dn, R) irreps, the Sp(2d, R) or SO*(2d) irrep (A4t
in, ..., A;+3in) appears with a multiplicity equal to the dimension dim (A) of the
corresponding O(n) or USp(n) irrep (A, ... A4). Equation (2.15) therefore has dim(A)
independent solutions, which can be characterised by their transformation properties
under O(n) or USp(n), i.e. by a given row of the irrep (A, ... Ay). All the Sp(24, R)
or SO*(2d) bases obtained from one of these Lws correspond to the same row of
(Ar. . Ag).

In the next section, we shall reformulate the state labelling problem for the chains
(2.134, b) in terms of the complementary chains (2.14¢, b).

3. Reduction of the unitary group to its orthogonal or symplectic subgroup

When d < », the decomposition of the d-row irrep [h,h,... hy] of U(n) into irreps
(A1As... Ay) of O(n) or USp(n) is governed by Littlewood’s branching rule (1950).
It states that, if in the reduction to irreps of U(n), the product representation
[AiAz. .. Ag)x[hih5. .. hy] contains [k, ... hy] a certain number of times, which we
denote by g(ayn’ys, then the irrep [hyh; ... hy] of U(n) breaks into irreps (A;A5. .. Ay)
of O(n) or USp(n) according to the following relation:

(hyhy. . hg]l= X ( Z g[a][h‘][;.))(/\al\z o Aa) (3.1)
Ahg \hiohy

where the summation over hi, ..., h} is restricted to partitions into even parts in the
O(n) case, and to partitions in which each part is repeated an even number of times
in the USp(n) one. Practical evaluation of the branching rule is made easier by using
infinite series of S functions (King 1975). When d > v, the non-standard O(n) or
USp(n) symbols (A, ... A,) have to be converted into standard ones by using Newell’s
modification rules (1951), thereby making the branching rule quite complicated. We
shall therefore restrict ourselves here to the d < v case, although the detailed study of
the d > v case, previously carried out for O(n) (Quesne 1984), could be extended to
USp(n) along the lines of the present work.

Let us consider the highest weight states (Hws), P(%;)|0), of all the equivalent
O(n) or USp(n) irreps characterised by (A, ... Ay), and contained in anirrep [A, ... h,]
of U(n). Here P(m;) is a polynomial in the dn boson creation operators 7,,, and |0)
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denotes the boson vacuum state. Those Hws can be obtained as the simultaneous
solutions of the following two systems of equations:

As,—sp(nis)|0> = Au-f-l—slz’("’is)|0> §= Va LR ] 1 (32(1)
A P(1)]0)=0 s>t>—s for O(n)
s=1>-s for USp(n) (3.2b)
and
CUP(TII':)I(» = hiP(nis)l()) i=i...,d (3.3a)
where we assume that A ,q,..., A, are all equal to zero. Equations (3.2) and (3.3)

can also be interpreted in terms of the reduction of the Sp(2d, R) or SO*(2d) irreps
with respect to U(d). To prove this assertion, let us successively analyse the significance
of both these equations.

From equation (2.6), a solution of equation (3.2) is the Hws of some O(n) or
USp(n) irrep characterised by the partition (A;...A,). From the complementarity
between O(n) and Sp(2d, R), or USp(n) and SO*(2d), it follows that the set of all
such solutions span the carrier space of an Sp(2d, R) or SO*(2d) irrep specified by
its lowest weight (A;+3n,...,A;+3in). In the same way, a solution of equation (3.3)
is the Hws of some U(d) irrep characterised by the partition [h,... h;]. The com-
plementarity between U(d) and U(n) then imposes that the set of all such solutions
span the carrier space of a U(n) irrep specified by the same partition [h; ... hy].

If we now consider all the simultaneous solutions of equations (3.2) and (3.3), we
can interpret them either as the Hws of all the equivalent O(n) or USp(n) irreps
characterised by the same partition (A, ... A,), and containedina U(n) irrep [h, ... hy],
or as the Hws of all the equivalent U(d) irreps specified by the same partition [h, .. . hy],
and contained in an Sp(2d, R) or SO*(2d) irrep (A, +4%n,..., A, +in). This establishes
the equivalence of the state labelling problems for the chains (2.13a) and (2.144a), as
well as (2.13b) and (2.14b).

Consequently, the simultaneous solutions of equations (3.2) and (3.3) can be written
as the kets

(Ag+in,.o 0, A +in) (... k4]
P(ni)|0) = [(T*)[hy .. . ha] ; T Aa) (3.4)
max max

whose left-hand part characterises the irreps of the chain (2.14a) or (2.14b), and whose
right-hand part specifies those of the chain (2.13a) or (2.13b). Here (I'*) denotes the
whole set of k missing labels, distinguishing between repeated irreps of U(d) contained
in a given irrep of Sp(2d, R) or SO*(2d), as well as between repeated irreps of O(n)
or USp(n) contained in a given irrep of U(n). The number k of missing labels is
respectively given by

k=3d(d-1) (3.5a)
for the chains (2.13a) and (2.14a), and
=3d(d -3) ifd=3

=0 ifd=1,2 (3.5b)

for the chains (2.13b) and (2.14b).



2680 C Quesne

Equations (3.5a) and (3.5b) can be established for the chains (2.13a) and (2.13b)
by applying a result of Seligman and Sharp (1983). The latter states that the number
of internal labels needed to specify the states of a degenerate irrep (i.e. an irrep for
which one or more labels are zero) of a compact semi-simple Lie group is given by

b=3Xr-N-a (3.6)

where r and [ are the order and the rank of the group, respectively, and a is the number
of lowering generators which annihilate the irrep Hws. For d-row irreps of the group
G =U(n), we easily find from the well known expression of their Hws (Moshinsky
1963) that

bo=3d(2n—d -1) 3.7

while for d-row irreps of the subgroup H=0(n) or USp(n), we find from equations
(2.6¢) and (5.2) below that

by=d(n—-d-1) for O(n)
=d(n-d) for USp(n). (3.8)

The number k of missing labels is then given by
k=bs—by—d (3.9)

where d is the number of independent labels characterising the subgroup irrep
{A1...Ag),andis equalto d except for USp(n)and d =1, 2, for which, as a consequence
of Littlewood’s branching rule (3.1), it reduces to 0 and 1, respectively. Equations
(3.7), (3.8) and (3.9) finally lead to equation (3.5).

In § 5, we shall show how a canonical choice can be made for the k missing labels
(I'"). For such a purpose, we shall construct the whole set of simultaneous solutions
of equations (3.2) and (3.3). As it will prove convenient to know the latter for the
special case where the irrep of O(n) or USp(n) is the scalar one, we first study this
case in detail in the next section.

4. The case of scalar representations of the orthogonal or symplectic subgroup

From Littlewood’s branching rule (3.1), it results that the scalar irrep (0) of O(n) or
USp(n) is contained with multiplicity one in the U(n) irreps [h, ... h;] for which
hy,..., hy are even integers in the O(n) case, or hy; =hy,_,, i=1,...,8=[3d], and
hy =0 if d is odd, in the USp(n) one, and that it does not appear in the remaining
irreps. We shall henceforth denote the U(n) irreps containing the scalar irrep of O(n)
or USp(n) by the symbol [A7... A1

Let us consider the system of equations (3.2) and (3.3), where A,.,_, and h; are
replaced by 0 and hj, respectively, and search for its single simultaneous solution.
From § 3, the latter is the Hws of a U(d) irrep [h]... h}], belonging to the carrier
space of the single Sp(2d, R) or SO*(2d) irrep ((3n)?) appearing in the reduction of
the Sp(2dn, R) irreps. The Lws of the irrep (3n)?), i.e. the solution of equation (2.15)
where A4, _; is replaced by 0, is the boson vacuum state |0). The remaining bases are
generated from it by applying polynomials in the Dj;, E; and D generators. By using
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the commutation relations (2.9), it is always possible to write such polynomials in the
normal form, i.e. as

P(D})P'(E;)P"(Dy) (4.1)

where P, P’ and P” are some polynomials in the indicated operators. Since the operators
D; annihilate the state |0), while the operators E; reduce to the constants in §; when
acting upon the latter, the bases of ((3n)“) can be written as P(D})|0).

It remains to determine the polynomial P°(Dj), which creates the Hws of the
U(d)irrep [hi,..., h3],

(GGn)%) [hi... ki)
P*(D})|0y=|[h}... h31; ) ). (4.2)
max

In equation (4.2), no additional labels (I'*) are needed. The explicit form of PX(D}})
can be found by solving equation (3.3), where h; is replaced by h;, and P(%,) by
PS(DL-). This is most easily done by applying the method of elementary permissible
diagrams (Epp) (Moshinsky and Syamala Devi 1969, Sharp and Lam 1969).

In the O(n) case, there are d EPD, corresponding to the U(n) irreps [2'], i=1,..., d,
respectively. Their Hws can be written as

D;ZA.‘i,IZ...i =Z (_l)pD-{,p(l)Dg.p(l) e Difp(i) (43)
P

where the summation is carried out over the i! permutations of the indices 1,2,..., 1
In terms of them, the polynomial P*(Dj;) reads (Deenen and Quesne 1982)

d
PS(D:)') = H (D;rz...i,u...i)(h'_h'“)/z (4.4)

i=1

where h,,, is assumed to be equal to zero.
In the USp(n) case, there are & EPD, corresponding to the U(n) irreps [1%],
i=1,...,8, respectively. Their Hws are given by

DI 2.2i-12i — z (—l)pD;(l),p(Z) ‘e D;(Zi—l),p(Zi) (4-5)
P

where the summation is carried out over the [2'!]7'(2i)!=(2i —1)!! permutations of
the indices 1,..., 2i, which exchange neither the indices of the same D" operator nor
the pairs of indices of two such operators. For i =4, for instance, equation (4.5) reads

D1.234= DIzD;4_DI3D;4+ DI“D;::, (46)

The polynomial P*(D}) can then be written as
t d t h
P(Dy)= l_[ (Di2.2i-121) 21" R (4.7)
i=1

where h,., is again assumed to be equal to zero.
Having solved equations (3.2) and (3.3) for the special case of O(n) or USp(n)
scalar irreps, we shall now proceed to the general case in the next section.
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5. The general case

Let us consider equations (3.2) and (3.3), where hy, ..., hg and A, ..., Ay now assume
arbitrary values compatible with Littlewood’s branching rule (3.1). From § 3, their
simultaneous solutions are the Hws of the equivalent U(d) irreps, characterised by the
same partition [h, ... h;], and belonging to a given Sp(2d, R) or SO*(2d) irrep (As +
in, ..., A;+3n), namely that made of O(n) or USp(n) nws. Let us therefore first
construct the carrier space of the latter, and then search for the U(d) Hws it contains.

The Lws of the Sp(2d, R) or SO*(2d) irrep (A, +3n,..., A, +3n), made of O(n) or
USp(n) Hws, is the simultaneous solution of equations (2.15) and (3.2). Inthe notations
of equation (3.4), it can be written as

(Ag+in, ..., A +in) [Ar... A4
P("?is)|0>= [Ar. . A4] > (A1 Ag) (5.1
min max

where no additional labels (I'*) are needed. The explicit form of P(=;,) is easily found
to be

_ d
P(n) = H (nd—H-l...d,—v+i—1...—v)A|_l\lﬂ' (5.2)
i=1

In equation (5.2), Na-i+1..a-v+i-1..- is defined by

Nd—-i+l..d~v+i-l..—v = Z (_l)pnd—i+1,p(—v+l‘—1) c o Mdp(-») (5-3)
P

where the summation is carried out over the i! permutations of the indices —v+i—
1,...,—n

From the Lws (5.1), we can generate all the bases of the irrep (A, +3n,..., A, +3n)
by applying polynomials of the form given in equation (4.1). In this equation, we can
eliminate P"(D;) since the operators D; annihilate the Lws. Moreover, the action of
all the polynomials P'(E;) upon the latter generates the carrier space of the U(d) irrep
[A1...Az]. It is possible to choose P'(E;) in such a way that the resulting state
transforms irreducibly under the canonical chain U(d)>U(d-1)>...2U(1), and is
characterised by a Gel'fand pattern (A) (Gel’fand and Tseitlin 1950, Baird and Bieden-
harn 1963, Moshinsky 1963). In the notation of equation (3.4), such a state can be
written as

(Ag+in, ..., A tin) [Ar... A4]
P(A)(nis)l(»: [)‘1 e )\d] ) ()\1 cAg) ) (5-4)
(A) max

In practice the explicit form of P, () can be found by applying appropriate U(d),
U(d-1),...,U(2) raising operators (Nagel and Moshinsky 1965) to the state (5.1).
Finally, all the bases of the irrep (A4 +1n,..., A, +1in) are obtained from the set of
states (5.4) by applying all possible polynomials P(D}).

It remains to find the Hws of all the equivalent U(d) irreps, characterised by the
same partition [k, ... hy], in the carrier space of the irrep (A, +3n,..., A, +3n). They
are obtained by solving equation (3.3), where P(7;) is a linear combination of the
(Ag+3n,..., A +3n) bases we have just constructed. Since the states (5.4) already
transform irreducibly under U(d), let us classify the polynomials P(Dj};) according to
U(d) irreps. From § 4, we know that, when applied to the boson vacuum state, the
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set of all polynomials P(Dj) gives rise to the bases of the Sp(2d,R) or
SO*(2d) irrep ((3n)?). A set of linearly independent polynomials in Dj; can therefore
be obtained by considering all allowed values of hj,..., hj, as specified in § 4, and
all Gel'fand patterns (h*) corresponding to [hj... h3]. In the notations of equation
(3.4), the corresponding states can be written as

(G [h... R3]
Pl (D10 = |[h ... h3] ; (0) . (5.5)
(h*)

The explicit form of P{,+,(D}) can be found by applying appropriate lowering operators
(Nagel and Moshinsky 1965) to the Hws, given in equations (4.4) and (4.7).

It is now straightforward to obtain ail the solutions (3.4) of equation (3.3). For
such a purpose, we just have to couple the polynomials ﬁm(n,-s) and P{,+(Dj) to a
definite irrep [h,... hy] of U(d) by means of appropriate U(d) Wigner coefficients,
as follows:

(¥")
~ Chyocohadl 077 VA Ag)
P(n;)|0) = WZ)W . [hS... R3] "

(k%)

In equation (5.6), we use Biedenharn’s canonical characterisation of the U(d) Wigner
coefficients by means of operator patterns (y°) (Biedenharn et al 1967). By this

Pfh‘)(Dij)p(,\)(ﬂis)|0>- (5.6)

procedure, we identify the set of missing labels (I') with the irrep labels hi,..., hJ,
and the operator patterns (y°), i.e.
(v*)
(Ir" =< . o 5.7
[hi... ha] G-

Since the partitions [k ... h;] are those appearing in Littlewood’s branching rule
(3.1), and moreover (y*) solves the state labelling problem for the product [A, ... Az] %
[h3... hg] of U(d) irreps, the number of the states (5.6), corresponding to all possible
(T”), agrees with that predicted by Littlewood’s branching rule. We have therefore
found all the simultaneous solutions of equations (3.2) and (3.3) by reducing the
internal state labelling problem for U(n) > O(n) or USp(n) to the external state labelling
problem for U(d).

As a final check, let us show that the definition (5.7) of (I'*) provides us with the
right number k of additional labels, as given in equation (3.5). In equation (5.7), the
total number of labels I'j,, i <j<i=<d, is equal to 3d(d +1); however, they are linked
by the d relations

i i1
Zr;,-—ZF;,._l=h,.—A,. i=1,...,d (5.8)

j=1 j=1
In the O(n) case, there are no other relations among the T}, so that the number of
independent labels is given by 3d(d —1), as predicted by equation (3.5a). In the

USp(n) case, however, for d =3 there are d additional relations among the I[';;, namely
the conditions

s __ 1.8 .
2i = Moy i=1,...,8

5.9
a=0 if d is odd (59)
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resulting from the definition of [hj... h;], and the relations
‘y;i—l,d—1=h;i—l i=1,...,0 (5-10)

following from the triangular inequalities satisfied by operator patterns (Biedenharn
et al 1967); the number of independent labels I'}; is therefore given by 3d(d —3), in
agreement with equation (3.5b). For d =1 or 2, a similar count also leads to equation
(3.5b).

In conclusion, we have proved that the previously proposed canonical solution of
the state labelling problem for U(n) > O(n) (Deenen and Quesne 1983, Quesne 1984)
can indeed be extended to U(n) > USp(n), provided we switch from the metric g=1,
specific to O(n), to the unified metric (2.1), and replace the complementary chain
Sp(2d, R) o U(d) by the corresponding chain SO*(2d) > U(d).
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