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J. Phys. A: Math. Gen. 18 (1985) 2675-2684. Printed in Great Britain 

Reduction of the unitary group to its orthogonal or symplectic 
subgroup: a unified approach based upon complementary 
groups 

C Quesnet 
Physique Thiorique et Mathimatique C P  229, Universiti Libre de Bruxelles, Bd du 
Triomphe, BIOS0 Brussels, Belgium 

Received 28 January 1985 

Abstract. A unified analysis of the state labelling problems for the d-row irreducible 
representations of U(n), when reduced with respect to either its orthogonal subgroup O ( n )  
or its symplectic subgroup USp(n) (the latter in the even-n case), is carried out by using 
appropriate metrics and the complementarity relationship between the groups O( n )  and 
Sp(2d, R), or USp(n)  and SO*(2d). In this way, a recently proposed canonical solution 
to the U(n) = O ( n )  state labelling problem is extended to the U(n)  >USp(n)  chain. This 
shows the equivalence between both these internal state labelling problems and the external 
state labelling problem for U(d), as expressed in Littlewood’s branching rules for U(n)  3 

O( n )  and U( n )  3 USp( n). 

1. Introduction 

The construction of bases for the d-row irreducible representations (irreps) of the 
unitary group U( n) is difficult when U( n) is reduced to its orthogonal or symplectic 
subgroup, because the latter does not provide enough quantum numbers to completely 
specify the states: this is the so-called state labelling problem. 

In a series of papers (Deenen and Quesne 1983, Quesne 1984), a new solution to 
the U( n) =) O( n) state labelling problem was proposed. This solution, based upon the 
complementarity relationship between the U(n) =) O(n) and Sp(2d, R )  =) U(d)  chains 
(Moshinsky and Quesne 1971, Gross and Kunze 1977, Kashiwara and Vergne 1978), 
was termed canonical because it reflects in a very simple way the reduction of the 
internal state labelling problem for U( n) =) O( n) to the external state labelling problem 
for U( d ) ,  as expressed in Littlewood’s branching rule (1950), supplemented, when 
necessary, with Newell’s modification rules (1951). It is not restricted to small values 
of n or d, although its practical usefulness is limited by the need for an explicit 
knowledge of some U( d )  coupling and recoupling coefficients. 

The aim of the present paper is to extend such a solution to the case of U(n) 2 
USp(n), where n is even. For such a purpose, we shall realise the generators of the 
U( n) orthogonal and symplectic subgroups in terms of boson creation and annihilation 
operators, defining them in a unified way by using appropriate metrics (Quesne 1985). 
The previously obtained results for O ( n )  will then easily be transposed for USp(n), 
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2676 C Quesne 

provided we replace the Sp(2d, R )  1 U(d)  chain by the SO*(2d) 3 U(d)  one, com- 
plementary with respect to U( n )  3 USp( n) (Gelbart 1979, Quesne 1985). 

In $2 ,  the unified treatment of the unitary group orthogonal and symplectic 
subgroups, as well as their complementary groups, is reviewed. The reduction of U( n )  
to O( n) or USp( n) is then analysed in 9 3. In 9 4, bases of the O( n) or USp( n) scalar 
irreps, belonging to the carrier space of a U( n) d-row irrep, are constructed. They are 
finally used in 9 5 to solve the state labelling problem for U(n) 2 O ( n )  or USp(n), 
where arbitrary irreps of the subgroup are considered. 

2. The orthogonal and symplectic subgroups of U(n) and their complementary groups 

In a previous paper (Quesne 1985), the orthogonal and sympletic subgroups of U(n) 
were treated in a unified way by introducing a metric g = llgsf 11, satisfying the conditions 
gg'= Z and g'= Eg, where - stands for transposed, and E = +1 for O ( n )  and -1 for 
USp( n). For the present purpose, it is convenient to make a definite choice for g. Let 
us denote the n values of the indices s, t by U, v - l , . .  ., 1, -1,.. .,-v+l, -U when 
n =2v, and n = v, v-1,.  . . ,1 ,0 ,  -1,. . . , - U +  1, -U when n = 2 v + l ,  and let us choose 

g=in for O( n), 51 = 2 v  or 2v + 1 

forUSp(n), n=2v. 
-1, 0, 

Here ik is the k x k matrix with +1 on the minor diagonal, and 0 elsewhere. We can 
therefore write 

gsr = a s S s , - ,  (2.2) 
where a, is equal to 1 for O(n), and to the sign of s for USp(n). 

To realise the U( n) d-row irreps, we need at least dn boson creation and annihilation 
operators (Baird and Biedenharn 1963, Moshinsky 1963). Let us denote them by 7)i, 

and ti,, i = 1, .  . . , d, s = 1, . . . , n, respectively. In terms of the U(n) generators 

those of O(n) and USp(n) are defined by 

AsI = ~ , C - , ,  - EU~C-~, ,  = - & A f S  = E U , U ~ ( A - ~ , - , ) ~  

[Asr, As*,$] = ~ , , 8 s , , - s A f , f  + ~ f , 8 f , , - r A s c s  + UspSs:-,A,fr+ ~ r , 8 f , , - s A f ~ # .  

(2.4) 

and their commutation relations are given by 

(2.5) 

We can take as independent generators the operators As[, where s > t for O( n) and 
sa t for USp( n). They separate into the following three subsets: 

(i)  A,,-,, s = U,. . . , 1, (2 .6a)  

(ii) As,, s > t > - s  for O( n), and s 3 t >  --s for USp( n) (2.6 b) 

(iii) - t > s > t f o r O ( n ) , a n d  - t > s a t f o r U S p ( n )  

respectively made of the weight, raising and lowering generators. 
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To construct bases for the d-row irreps of U(n), reduced to O ( n )  or USp(n), it is 
convenient to consider the complementary groups of U(n),  and O(n) or USp(n), 
contained in the group Sp(2dn, R )  generated by all bilinear operators in t)is and tis 
(Moshinsky and Quesne 1970, Howe 1979). For U( n), it is the group U(d)  (Moshinsky 
1963), whose generators? are defined by 

and are the weight, raising and lowering generators according to i = j ,  i < j ,  and i > j .  
For O( n) and USp( n), the complementary groups are respectively the groups Sp(2d, R )  
and SO*(2d) (Moshinsky and Quesne 1971, Gross and Kunze 1977, Kashiwara and 
Vergne 1978, Gelbart 1979, Quesne 1985), both generated by the operators 

0; = 1 usTisTj , - s  

and 

E ,  = 1 C ( ~ ~ ~ t ~ ~  + tjsvis) = C, + ins i j .  
5 

The latter satisfy the following commutation relations: 

[E,, Ekll = ajkEil - 6ilEkj [ob, DL] = [Do, Dkl] = 0 

[ E ,  D:,] = 6jkD;l 6jlD:i [E,, = -8ikDji - 6iiDkj (2.9) 

[ Dij, D:,] = + &6&kj + E6jkEl i  + 8jrEki 

and their symmetry and Hermiticity properties are given by 

0;. = &Dji D.. v = ED.. I f  (2.10) 

(DL)+ = Do (E, . )+ = ‘Eji. (2.11) 

and 

We can take as independent generators all the operators E,, as well as those operators 
D$ and Dij for which i S j for Sp(2d, R ) ,  or i < j for SO*(2d). They separate into the 
following three subsets: 

(i)  Eii 

(ii) E,  i < j  

i =  1, .  . . , d 

DL i zs j for Sp(2d, R )  and i < j for SO*(2d) 

(iii) E, i > j  

(2.12a) 

(2.12b) 

Dv i =Sj for Sp(2d, R)  and i < j for SO*(2d) (2.12c) 

respectively made of the weight, raising and lowering generators. 
With the chains 

U(n) = O(n) and U(n) = USp(n) (2.13~1, b) 

t In fact, the U(n) and U(d) subgroups of Sp(Zdn, R )  are respectively generated by the operators E,, = 
d I = ,  (Q,,[, ,  + & , Q , ~ ) ,  and E,, which only differ from C,, and C ,  in some irrelevant constants, i d s , ,  and ins, , .  
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we can therefore respectively associate the complementary chains 

s p w ,  R )  = U(d)  and SO*(2d) = U(d).  (2.14a, b )  

Within either irrep (( 1/2)d“) or (( 1/2)d“-’3/2) of Sp(2dn, R ) ,  the irreps of U( n) and 
U(d)  are characterised by the same partition [ h ,  . . . hd]. Those of Sp(2d, R )  and 
SO*(2d) are positive discrete series, specified by their lowest weight (Ad  +in,. . . , A I  -k 
in), where ( A l . .  . A d )  is the partition characterising the irreps of O(n) and USp(n), 
respectively (it will be assumed that d s v = [ t n ]  throughout this paper). The lowest 
weight state (LWS) of the Sp(2d, R )  and SO*(2d) irreps satisfies the following system 
of equations: 

DijlLWS) = 0 

E,  I LWS) = 0 i>j (2.15) 

EiilLws) = ( A d + l - i  +tn) lLWS) .  

In the reduction of the Sp(2dn, R )  irreps, the Sp(2d, R )  or SO*(2d) irrep ( A d  + 
in,. . . , A I  +in) appears with a multiplicity equal to the dimension dim ( A )  of the 
corresponding O ( n )  or USp(n) irrep ( A , . .  . Ad). Equation (2.15) therefore has dim(A) 
independent solutions, which can be characterised by their transformation properties 
under O(n) or USp(n), i.e. by a given row of the irrep ( A l . .  . Ad). All the Sp(2d, R )  
or SO*(2d) bases obtained from one of these LWS correspond to the same row of 

In the next section, we shall reformulate the state labelling problem for the chains 
( A l . .  . Ad). 

(2.13a, b )  in terms of the complementary chains (2.14a, b) .  

3. Reduction of the unitary group to its orthogonal or symplectic subgroup 

When d S v, the decomposition of the d-row irrep [ h l h 2 . .  . hd] of U(n) into irreps 
( A l A 2 . .  . A d )  of O ( n )  or USp(n) is governed by Littlewood’s branching rule (1950). 
It states that, if in the reduction to irreps of U(n),  the product representation 
[ A l A 2 . .  . Ad]  x[hsh”,  . . h i ]  contains [ h , h 2 . .  . h d ]  a certain number of times, which we 
denote by g [ A ] [ h ’ ] [ h ] ,  then the irrep [ h 1 h 2 .  . . h d ]  of U(n) breaks into irreps ( A , A 2 . .  . A d )  

of O(n) or USp(n) according to the following relation: 

where the summation over h i , .  . . , h: is restricted to partitions into even parts in the 
O(n) case, and to partitions in which each part is repeated an even number of times 
in the USp( n) one. Practical evaluation of the branching rule is made easier by using 
infinite series of S functions (King 1975). When d > v, the non-standard O(n) or 
USp(n) symbols ( A , .  . . Ad) have to be converted into standard ones by using Newell’s 
modification rules (1951), thereby making the branching rule quite complicated. We 
shall therefore restrict ourselves here to the d C Y case, although the detailed study of 
the d > v case, previously carried out for O( n) (Quesne 1984), could be extended to 
USp(n) along the lines of the present work. 

Let us consider the highest weight states (HWS), P ( T ~ ~ ) I O ) ,  of all the equivalent 
O( n) or USp( n) irreps characterised by ( A ,  . . . Ad), and contained in an irrep [ h ,  . . . h d ]  

of U(n). Here P(qiS) is a polynomial in the dn boson creation operators T ~ ~ ,  and 10) 
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P(7is)(o)= 

denotes the boson vacuum state. Those HWS can be obtained as the simultaneous 
solutions of the following two systems of equations: 

As,--EP(Vis)Io) = Av+,-sP(~is)Io) s = v,. . . , l  ( 3 . 2 ~ )  

Vis)IO) = 0 s >  t > - s  for O(n) 

(3.4) i ( h d + i n ,  . . . ,  h l + i n )  
(rs)[hl  * .  . h d l  ; (rS)(A1 * - .  A d )  

I h 1  . . .  h d l  

max max 

and 
s 2 t > -s for USp( n )  (3.2b) 

i = i, . . . , d (3.3u) 

CijP(  is 1 I 0) = 0 i<j (3.3b) 

CiiP(7is)IO) = hiP(7is)lO) 
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Equations ( 3 . 5 ~ ~ )  and (3.5b) can be established for the chains (2 .13a)  and (2.13b) 
by applying a result of Seligman and Sharp (1983). The latter states that the number 
of internal labels needed to specify the states of a degenerate irrep (i.e. an irrep for 
which one or more labels are zero) of a compact semi-simple Lie group is given by 

b =f(r- I )  - a (3.6) 

where r and 1 are the order and the rank of the group, respectively, and a is the number 
of lowering generators which annihilate the irrep HWS. For d-row irreps of the group 
G = U(n),  we easily find from the well known expression of their HWS (Moshinsky 
1963) that 

bG=+d(2n-d-1) (3.7) 

while for d-row irreps of the subgroup H = O( n )  or USp( n ) ,  we find from equations 
( 2 . 6 ~ )  and (5.2) below that 

bH= d(n  - d - 1) for O( n) 

= d ( n - d )  for USp( n) .  

The number k of missing labels is then given by 

where d is the number of independent labels characterising the subgroup irrep 
( A ,  . . . A d ) ,  and is equal to d except for USp( n )  and d = 1,2, for which, as a consequence 
of Littlewood’s branching rule (3.1), it reduces to 0 and 1, respectively. Equations 
(3.7), (3.8) and (3.9) finally lead to equation (3.5). 

In 5 5, we shall show how a canonical choice can be made for the k missing labels 
(I?). For such a purpose, we shall construct the whole set of simultaneous solutions 
of equations (3.2) and (3.3). As it will prove convenient to know the latter for the 
special case where the irrep of O(n) or USp(n) is the scalar one, we first study this 
case in detail in the next section. 

4. The case of scalar representations of the orthogonal or symplectic subgroup 

From Littlewood’s branching rule (3.1), it results that the scalar irrep (0) of O ( n )  or 
USp(n) is contained with multiplicity one in the U(n) irreps [ h ,  . . . h d ]  for which 
h,, . . . , hd are even integers in the O ( n )  case, or h2,  = h 2 , - , ,  i = 1 , .  . . , 8 = [td], and 
hd = 0 if d is odd, in the USp(n) one, and that it does not appear in the remaining 
irreps. We shall henceforth denote the U( n) irreps containing the scalar irrep of O( n) 
or USp(n) by the symbol [ h ;  . . . h:]. 

Let us consider the system of equations (3.2) and (3.3), where A,+,-, and h, are 
replaced by 0 and h:, respectively, and search for its single simultaneous solution. 
From § 3, the latter is the HWS of a U(d)  irrep [ h i . .  . h:],  belonging to the carrier 
space of the single Sp(2d, R )  or SO*(2d) irrep appearing in the reduction of 
the Sp(2dn, R )  irreps. The LWS of the irrep i.e. the solution of equation (2.15) 
where A d + , - l  is replaced by 0, is the boson vacuum state IO). The remaining bases are 
generated from it by applying polynomials in the DL, E ,  and D, generators. By using 
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the commutation relations (2.9), it is always possible to write such polynomials in the 
normal form, i.e. as 

P(D;)P‘(E,)P’’( D ~ ~ )  (4.1) 

where P, P’ and P” are some polynomials in the indicated operators. Since the operators 
Dij annihilate the state IO), while the operators E ,  reduce to the constants in 8,  when 
acting upon the latter, the bases of ((4n)“) can be written as P(DL)lO). 

It remains to determine the polynomial P’(D;), vhich creates the HWS of the 
U(d)  irrep [ h i , .  . . , hi], 

(4.2) 

In equation (4.2), no additional labels (P) are needed. The explicit form of P’(Db) 
can be found by solving equation (3.3), where h, is replaced by hs, and P(v, , )  by 
P”(DL).  This is most easily done by applying the method of elementary permissible 
diagrams (EPD) (Moshinsky and Syamala Devi 1969, Sharp and Lam 1969). 

In the O( n) case, there are d EPD, corresponding to the U( n) irreps [2’], i = 1 ,  . . . , d, 
respectively. Their HWS can be written as 

0 : 2  1.12 I = E  (-1)pDLpm&,p(2) . . . D h 1  (4.3) 
P 

where the summation is carried out over the i !  permutations of the indices 1,2,  . . . , i. 
In terms of them, the polynomial P”(D;) reads (Deenen and Quesne 1982) 

(4.4) 

where h d + l  is assumed to be equal to zero. 

i = 1,  . . . , 6, respectively. Their HWS are given by 
In the USp(n) case, there are 6 EPD, corresponding to the U(n)  irreps [12’] ,  

where the summation is carried out over the [2’i!]-’(2i)! = (2i - l ) ! !  permutations of 
the indices 1 , .  . . ,2i ,  which exchange neither the indices of the same Dt operator nor 
the pairs of indices of two such operators. For i = 4, for instance, equation (4.5) reads 

The polynomial P”((O?,) can then be written as 

where h,,, is again assumed to be equal to zero. 

scalar irreps, we shall now proceed to the general case in the next section. 
Having solved equations (3.2) and (3.3) for the special case of O ( n )  or USp(n) 
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P(A)(Tis)lo)= 

5. The general case 

( A I  . . .  A d )  . (5.4) ) 
( A d  +in,. . . , A l + i n )  
[ A l .  * A d ]  

[ A l . .  * A d ]  

( A  1 max 

Let us consider equations (3.2) and (3.3), where hl ,  . . . , hd, and A I , .  . . , A d  now assume 
arbitrary values compatible with Littlewood’s branching rule (3.1). From $ 3, their 
simultaneous solutipns are the HWS of the equivalent U ( d )  irreps, characterised by the 
same partition [ h ,  . . . h d ] ,  and belonging to a given Sp(2d, R) or SO*(2d) irrep ( A d  + 
in,. . . , A,+in ) ,  namely that made of O(n) or USp(n) HWS. Let us therefore first 
construct the carrier space of the latter, and then search for the U ( d )  HWS it contains. 

The LWS of the Sp(2d, R )  or S0*(2d) irrep ( A d  +in,. . . , A I  +in), made of O(n) or 
USp(n) HWS, is the simultaneous solution of equations (2.15) and (3.2). In the notations 
of equation (3.4), it can be written as 

where no additional labels (rS) are needed. The explicit form of P( T ~ ~ )  is easily found 
to be 

(5.2) 
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set of all polynomials P ( D i )  gives rise to the bases of the Sp(2d, R )  or 
SO*(2d) irrep A set of linearly independent polynomials in 0:. can therefore 
be obtained by considering all allowed values of h i , .  . . , h:, as specified in 8 4, and 
all Gel’fand patterns (h ’ )  corresponding to [ h f  . .  . h i ] .  In the notations of equation 
(3.4), the corresponding states can be written as 

The explicit form of P;,s,(Di.) can be found by applying appropriate lowering operators 
(Nagel and Moshinsky 1965) to the HWS, given in equations (4.4) and (4.7). 

It is now straightforward to obtain all the solutions (3.4) of equation (3.3). For 
such a purpose, we just have to couple the polynomials p ( h ) ( ~ i s )  and P;,s,(D>) to a 
definite irrep [ h ,  . . . h d ]  of U(d)  by means of appropriate U(d)  Wigner coefficients, 
as follows: 

In equation (5.6), we use Biedenharn’s canonical characterisation of the U( d )  Wigner 
coefficients by means of operator patterns ( y ’ )  (Biedenharn et ul 1967). By this 
procedure, we identify the set of missing labels (r’) with the irrep labels h i , .  . . , h i ,  
and the operator patterns ( y’), i.e. 

Since the partitions [ h i  . . . h i ]  are those appearing in Littlewood’s branching rule 
(3.1), and moreover ( y ’ )  solves the state labelling problem for the product [ A ,  . . . A d ]  x 
[ h f  , , . h:] of U ( & )  irreps, the number of the states (5.6), corresponding to all possible 
(r’), agrees with that predicted by Littlewood’s branching rule. We have therefore 
found all the simultaneous solutions of equations (3.2) and (3.3) by reducing the 
internal state labelling problem for U( n )  1 O( n )  or USp( n )  to the external state labelling 
problem for U(d) .  

As a final check, let us show that the definition (5.7) of (rs) provides us with the 
right number k of additional labels, as given in equation (3.5). In equation (5.7), the 
total number of labels rji, i S j S i S d, is equal to i d (  d + 1); however, they are linked 
by the d relations 

I 1 - 1  

1 r;, - 1 rji-l = hi - A ,  i = 1, . . . , d. (5.8) 
j = 1  j = l  

In the O(n) case, there are no other relations among the rf,, so that the number of 
independent labels is given by f d ( d -  l ) ,  as predicted by equation ( 3 . 5 ~ ) .  In the 
USp( n) case, however, for d 3 3 there are d additional relations among the rji, namely 
the conditions 

h i i  = h i i - ,  i =  1, .  . . , 6  

h:=O if d is odd 
(5.9) 
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resulting from the definition of [ h s  . . . h : ] ,  and the relations 

y ; i - l , d - l =  hii-1 i =  1, .  . . , 6  (5.10) 

following from the triangular inequalities satisfied by operator patterns (Biedenharn 
e? a1 1967); the number of independent labels rii is therefore given by i d ( d  -3) ,  in 
agreement with equation (3 .5b ) .  For d = 1 or 2, a similar count also leads to equation 
(3.5b). 

In conclusion, we have proved that the previously proposed canonical solution of 
the state labelling problem for U(n) 2 O ( n )  (Deenen and Quesne 1983, Quesne 1984) 
can indeed be extended to U( n )  2 USp( n), provided we switch from the metric g = I, 
specific to O(n), to the unified metric (2.1), and replace the complementary chain 
Sp(2d, R)  2 U(d)  by the corresponding chain SO*(2d) 2 U(d) .  
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