Reduction of the unitary group to its orthogonal or symplectic subgroup: a unified approach based upon complementary groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 182675
(http://iopscience.iop.org/0305-4470/18/14/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:03

Please note that terms and conditions apply.

Reduction of the unitary group to its orthogonal or symplectic subgroup: a unified approach based upon complementary

 groups

 groups}

C Quesne \dagger
Physique Théorique et Mathématique CP 229, Université Libre de Bruxelles, Bd du Triomphe, B1050 Brussels, Belgium

Received 28 January 1985

Abstract

A unified analysis of the state labelling problems for the d-row irreducible representations of $U(n)$, when reduced with respect to either its orthogonal subgroup $\mathrm{O}(\boldsymbol{n})$ or its symplectic subgroup $\operatorname{USp}(n)$ (the latter in the even $-n$ case), is carried out by using appropriate metrics and the complementarity relationship between the groups $\mathrm{O}(n)$ and $\mathrm{Sp}(2 d, R)$, or $\operatorname{USp}(n)$ and $\mathrm{SO}^{*}(2 d)$. In this way, a recently proposed canonical solution to the $\mathrm{U}(n) \supset \mathrm{O}(n)$ state labelling problem is extended to the $\mathrm{U}(n) \supset \mathrm{USp}(n)$ chain. This shows the equivalence between both these internal state labelling problems and the external state labelling problem for $\mathrm{U}(d)$, as expressed in Littlewood's branching rules for $\mathrm{U}(n)$ = $\mathrm{O}(n)$ and $\mathrm{U}(n) \supset \mathrm{USp}(n)$.

1. Introduction

The construction of bases for the d-row irreducible representations (irreps) of the unitary group $\mathrm{U}(n)$ is difficult when $\mathrm{U}(n)$ is reduced to its orthogonal or symplectic subgroup, because the latter does not provide enough quantum numbers to completely specify the states: this is the so-called state labelling problem.

In a series of papers (Deenen and Quesne 1983, Quesne 1984), a new solution to the $\mathrm{U}(n) \supset \mathrm{O}(n)$ state labelling problem was proposed. This solution, based upon the complementarity relationship between the $\mathrm{U}(n) \supset \mathrm{O}(n)$ and $\mathrm{Sp}(2 d, R) \supset \mathrm{U}(d)$ chains (Moshinsky and Quesne 1971, Gross and Kunze 1977, Kashiwara and Vergne 1978), was termed canonical because it reflects in a very simple way the reduction of the internal state labelling problem for $\mathrm{U}(n) \supset \mathrm{O}(n)$ to the external state labelling problem for $U(d)$, as expressed in Littlewood's branching rule (1950), supplemented, when necessary, with Newell's modification rules (1951). It is not restricted to small values of n or d, although its practical usefulness is limited by the need for an explicit knowledge of some $U(d)$ coupling and recoupling coefficients.

The aim of the present paper is to extend such a solution to the case of $\mathrm{U}(n)$ つ $\operatorname{USp}(n)$, where n is even. For such a purpose, we shall realise the generators of the $\mathrm{U}(n)$ orthogonal and symplectic subgroups in terms of boson creation and annihilation operators, defining them in a unified way by using appropriate metrics (Quesne 1985). The previously obtained results for $\mathrm{O}(n)$ will then easily be transposed for $\operatorname{USp}(n)$,
† Maître de recherches FNRS.
provided we replace the $\mathrm{Sp}(2 d, R) \supset \mathrm{U}(d)$ chain by the $\mathrm{SO}^{*}(2 d) \supset \mathrm{U}(d)$ one, complementary with respect to $\mathrm{U}(n) \supset \mathrm{USp}(n)$ (Gelbart 1979, Quesne 1985).

In $\S 2$, the unified treatment of the unitary group orthogonal and symplectic subgroups, as well as their complementary groups, is reviewed. The reduction of $\mathrm{U}(n)$ to $\mathrm{O}(n)$ or $\operatorname{USp}(n)$ is then analysed in § 3. In § 4, bases of the $\mathrm{O}(n)$ or $\operatorname{USp}(n)$ scalar irreps, belonging to the carrier space of a $\mathrm{U}(n) d$-row irrep, are constructed. They are finally used in $\S 5$ to solve the state labelling problem for $\mathrm{U}(n) \supset \mathrm{O}(n)$ or $\operatorname{USp}(n)$, where arbitrary irreps of the subgroup are considered.

2. The orthogonal and symplectic subgroups of $\mathbf{U}(\boldsymbol{n})$ and their complementary groups

In a previous paper (Quesne 1985), the orthogonal and sympletic subgroups of $\mathrm{U}(n)$ were treated in a unified way by introducing a metric $g=\left\|g_{s t}\right\|$, satisfying the conditions $g \tilde{g}=I$ and $\tilde{g}=\varepsilon g$, where \sim stands for transposed, and $\varepsilon=+1$ for $O(n)$ and -1 for $\operatorname{USp}(n)$. For the present purpose, it is convenient to make a definite choice for g. Let us denote the n values of the indices s, t by $\nu, \nu-1, \ldots, 1,-1, \ldots,-\nu+1,-\nu$ when $n=2 \nu$, and $n=\nu, \nu-1, \ldots, 1,0,-1, \ldots,-\nu+1,-\nu$ when $n=2 \nu+1$, and let us choose

$$
\begin{align*}
g & =\bar{I}_{n} & & \text { for } \mathrm{O}(n), \bar{n}=2 \nu \text { or } 2 \nu+1 \\
& =\left(\begin{array}{cc}
O_{\nu} & \overline{\boldsymbol{I}}_{\nu} \\
-\bar{I}_{\nu} & O_{\nu}
\end{array}\right) & & \text { for } \operatorname{USp}(n), n=2 \nu \tag{2.1}
\end{align*}
$$

Here \bar{I}_{k} is the $k \times k$ matrix with +1 on the minor diagonal, and 0 elsewhere. We can therefore write

$$
\begin{equation*}
g_{s t}=\sigma_{s} \delta_{s,-t} \tag{2.2}
\end{equation*}
$$

where σ_{s} is equal to 1 for $\mathrm{O}(n)$, and to the sign of s for $\operatorname{USp}(n)$.
To realise the $\mathrm{U}(n) d$-row irreps, we need at least $d n$ boson creation and annihilation operators (Baird and Biedenharn 1963, Moshinsky 1963). Let us denote them by $\eta_{\text {is }}$ and $\xi_{i s}, i=1, \ldots, d, s=1, \ldots, n$, respectively. In terms of the $\mathrm{U}(n)$ generators

$$
\begin{equation*}
C_{s t}=\sum_{i=1}^{d} \eta_{i s} \xi_{i t} \tag{2.3}
\end{equation*}
$$

those of $O(n)$ and $\operatorname{USp}(n)$ are defined by

$$
\begin{equation*}
\Lambda_{s t}=\sigma_{s} C_{-s, t}-\varepsilon \sigma_{t} C_{-t, s}=-\varepsilon \Lambda_{t s}=\varepsilon \sigma_{s} \sigma_{t}\left(\Lambda_{-t,-s}\right)^{\dagger} \tag{2.4}
\end{equation*}
$$

and their commutation relations are given by
$\left[\Lambda_{s t}, \Lambda_{s^{\prime} t^{\prime}}\right]=\sigma_{s^{\prime}} \delta_{s^{\prime},-s} \Lambda_{t^{\prime} t}+\sigma_{t^{\prime}} \delta_{t^{\prime},-t} \Lambda_{s^{\prime} s}+\sigma_{s^{\prime}} \delta_{s^{\prime},-t} \Lambda_{s t^{\prime}}+\sigma_{t^{\prime}} \delta_{t^{\prime},-s} \Lambda_{t s^{\prime}}$.
We can take as independent generators the operators $\Lambda_{s t}$, where $s>t$ for $O(n)$ and $s \geqslant t$ for $\operatorname{USp}(n)$. They separate into the following three subsets:
(i) $\Lambda_{s,-s}, \quad s=\nu, \ldots, 1$,
(ii) $\Lambda_{s t}, \quad s>t>-s$ for $O(n)$, and $s \geqslant t>-s$ for $\operatorname{USp}(n)$
(iii) $>_{s t}, \quad-t>s>t$ for $\mathrm{O}(n)$, and $-t>s \geqslant t$ for $\operatorname{USp}(n)$
respectively made of the weight, raising and lowering generators.

To construct bases for the d-row irreps of $\mathrm{U}(n)$, reduced to $\mathrm{O}(n)$ or $\operatorname{USp}(n)$, it is convenient to consider the complementary groups of $\mathrm{U}(n)$, and $\mathrm{O}(n)$ or $\operatorname{USp}(n)$, contained in the group $\operatorname{Sp}(2 d n, R)$ generated by all bilinear operators in $\eta_{i s}$ and $\xi_{i s}$ (Moshinsky and Quesne 1970, Howe 1979). For $\mathrm{U}(n)$, it is the group $\mathrm{U}(d)$ (Moshinsky 1963), whose generators \dagger are defined by

$$
\begin{equation*}
C_{i j}=\sum_{s=-\nu}^{\nu} \eta_{i s} \xi_{j s} \tag{2.7}
\end{equation*}
$$

and are the weight, raising and lowering generators according to $i=j, i<j$, and $i>j$. For $\mathrm{O}(n)$ and $\operatorname{USp}(n)$, the complementary groups are respectively the groups $\operatorname{Sp}(2 d, R)$ and SO* $2 d$) (Moshinsky and Quesne 1971, Gross and Kunze 1977, Kashiwara and Vergne 1978, Gelbart 1979, Quesne 1985), both generated by the operators

$$
\begin{align*}
& D_{i j}^{\dagger}=\sum_{s} \sigma_{s} \eta_{i s} \eta_{j,-s} \\
& D_{i j}=\sum_{s} \sigma_{s} \xi_{i s} \xi_{j,-s} \tag{2.8}
\end{align*}
$$

and

$$
E_{i j}=\frac{1}{2} \sum_{s}\left(\eta_{i s} \xi_{j s}+\xi_{j s} \eta_{i s}\right)=C_{i j}+\frac{1}{2} n \delta_{i j} .
$$

The latter satisfy the following commutation relations:

$$
\begin{array}{ll}
{\left[E_{i j}, E_{k l}\right]=\delta_{j k} E_{i l}-\delta_{i l} E_{k j}} & {\left[D_{i j}^{\dagger}, D_{k l}^{\dagger}\right]=\left[D_{i j}, D_{k l}\right]=0} \\
{\left[E_{i j}, D_{k l}^{\dagger}\right]=\delta_{j k} D_{i l}^{\dagger}+\delta_{j l} D_{k i}^{\dagger}} & {\left[E_{i j}, D_{k l}\right]=-\delta_{i k} D_{j l}-\delta_{i l} D_{k j}} \tag{2.9}\\
{\left[D_{i j}, D_{k l}^{\dagger}\right]=\delta_{i k} E_{l j}+\varepsilon \delta_{i l} E_{k j}+\varepsilon \delta_{j k} E_{l i}+\delta_{j l} E_{k i}}
\end{array}
$$

and their symmetry and Hermiticity properties are given by

$$
\begin{equation*}
D_{i j}^{\dagger}=\varepsilon D_{j i}^{\dagger} \quad D_{i j}=\varepsilon D_{j i} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(D_{i j}^{\dagger}\right)^{\dagger}=D_{i j} \quad\left(E_{i j}\right)^{\dagger}=E_{j i} . \tag{2.11}
\end{equation*}
$$

We can take as independent generators all the operators $E_{i j}$, as well as those operators $D_{i j}^{\dagger}$ and $D_{i j}$ for which $i \leqslant j$ for $\operatorname{Sp}(2 d, R)$, or $i<j$ for $\mathrm{SO}^{*}(2 d)$. They separate into the following three subsets:
(i) $E_{i i} \quad i=1, \ldots, d$
(ii) $E_{i j} \quad i<j$
$D_{i j}^{\dagger} \quad i \leqslant j$ for $\operatorname{Sp}(2 d, R)$ and $i<j$ for $\mathrm{SO}^{*}(2 d)$
(iii) $E_{i j} \quad i>j$
$D_{i j} \quad i \leqslant j$ for $\operatorname{Sp}(2 d, R)$ and $i<j$ for $\mathrm{SO}^{*}(2 d)$
respectively made of the weight, raising and lowering generators.
With the chains

$$
\begin{equation*}
\mathrm{U}(n) \supset \mathrm{O}(n) \quad \text { and } \quad \mathrm{U}(n) \supset \mathrm{USp}(n) \tag{2.13a,b}
\end{equation*}
$$

[^0]we can therefore respectively associate the complementary chains
\[

$$
\begin{equation*}
\mathrm{Sp}(2 d, R) \supset \mathrm{U}(d) \quad \text { and } \quad \mathrm{SO}^{*}(2 d) \supset \mathrm{U}(d) \tag{2.14a,b}
\end{equation*}
$$

\]

Within either irrep $\left\langle(1 / 2)^{d n}\right\rangle$ or $\left\langle(1 / 2)^{d n-1} 3 / 2\right\rangle$ of $\mathrm{Sp}(2 d n, R)$, the irreps of $\mathrm{U}(n)$ and $\mathrm{U}(d)$ are characterised by the same partition [$h_{1} \ldots h_{d}$]. Those of $\mathrm{Sp}(2 d, R)$ and SO $^{*}(2 d)$ are positive discrete series, specified by their lowest weight $\left\langle\lambda_{d}+\frac{1}{2} n, \ldots, \lambda_{1}+\right.$ $\left.\frac{1}{2} n\right\rangle$, where $\left(\lambda_{1} \ldots \lambda_{d}\right)$ is the partition characterising the irreps of $\mathrm{O}(n)$ and $\operatorname{USp}(n)$, respectively (it will be assumed that $d \leqslant \nu=\left[\frac{1}{2} n\right]$ throughout this paper). The lowest weight state $\langle\mathrm{Lws}\rangle$ of the $\mathrm{Sp}(2 d, R)$ and $\mathrm{SO}^{*}(2 d)$ irreps satisfies the following system of equations:

$$
\begin{align*}
& D_{i j}|\mathrm{Lws}\rangle=0 \\
& E_{i j}|\mathrm{LwS}\rangle=0 \quad i>j \tag{2.15}\\
& E_{i i}|\mathrm{LwS}\rangle=\left(\lambda_{d+1-i}+\frac{1}{2} n\right)|\mathrm{LwS}\rangle .
\end{align*}
$$

In the reduction of the $\mathrm{Sp}(2 d n, R)$ irreps, the $\mathrm{Sp}(2 d, R)$ or $\mathrm{SO}^{*}(2 d)$ irrep $\left\langle\lambda_{d}+\right.$ $\left.\frac{1}{2} n, \ldots, \lambda_{1}+\frac{1}{2} n\right\rangle$ appears with a multiplicity equal to the dimension $\operatorname{dim}(\lambda)$ of the corresponding $\mathrm{O}(n)$ or $\operatorname{USp}(n)$ irrep $\left(\lambda_{1} \ldots \lambda_{d}\right)$. Equation (2.15) therefore has $\operatorname{dim}(\lambda)$ independent solutions, which can be characterised by their transformation properties under $\mathrm{O}(n)$ or $\operatorname{USp}(n)$, i.e. by a given row of the irrep $\left(\lambda_{1} \ldots \lambda_{d}\right)$. All the $\operatorname{Sp}(2 d, R)$ or $\mathrm{SO}^{*}(2 d)$ bases obtained from one of these Lws correspond to the same row of $\left(\lambda_{1} \ldots \lambda_{d}\right)$.

In the next section, we shall reformulate the state labelling problem for the chains ($2.13 a, b$) in terms of the complementary chains ($2.14 a, b$).

3. Reduction of the unitary group to its orthogonal or symplectic subgroup

When $d \leqslant \nu$, the decomposition of the d-row irrep [$h_{1} h_{2} \ldots h_{d}$] of $\mathrm{U}(n)$ into irreps $\left(\lambda_{1} \lambda_{2} \ldots \lambda_{d}\right)$ of $\mathrm{O}(n)$ or $\operatorname{USp}(n)$ is governed by Littlewood's branching rule (1950). It states that, if in the reduction to irreps of $\mathrm{U}(n)$, the product representation $\left[\lambda_{1} \lambda_{2} \ldots \lambda_{d}\right] \times\left[h_{1}^{s} h_{2}^{s} \ldots h_{d}^{s}\right]$ contains [$h_{1} h_{2} \ldots h_{d}$] a certain number of times, which we denote by $g_{[\lambda]\left[h^{s}\right][h]}$, then the irrep [$h_{1} h_{2} \ldots h_{d}$] of $U(n)$ breaks into irreps $\left(\lambda_{1} \lambda_{2} \ldots \lambda_{d}\right)$ of $\mathrm{O}(n)$ or $\mathrm{USp}(n)$ according to the following relation:

$$
\begin{equation*}
\left[h_{1} h_{2} \ldots h_{d}\right]=\sum_{\lambda_{1} \ldots \lambda_{d}}\left(\sum_{h_{1} \ldots h_{d}^{s}} g_{[\lambda]\left[h^{s}\right][h]}\right)\left(\lambda_{1} \lambda_{2} \ldots \lambda_{d}\right) \tag{3.1}
\end{equation*}
$$

where the summation over $h_{1}^{s}, \ldots, h_{d}^{s}$ is restricted to partitions into even parts in the $O(n)$ case, and to partitions in which each part is repeated an even number of times in the $\operatorname{USp}(n)$ one. Practical evaluation of the branching rule is made easier by using infinite series of S functions (King 1975). When $d>\nu$, the non-standard $O(n)$ or $\mathrm{USp}(n)$ symbols ($\lambda_{1} \ldots \lambda_{d}$) have to be converted into standard ones by using Newell's modification rules (1951), thereby making the branching rule quite complicated. We shall therefore restrict ourselves here to the $d \leqslant \nu$ case, although the detailed study of the $d>\nu$ case, previously carried out for $O(n)$ (Quesne 1984), could be extended to $\mathrm{USp}(n)$ along the lines of the present work.

Let us consider the highest weight states (hws), $P\left(\eta_{i s}\right)|0\rangle$, of all the equivalent $\mathrm{O}(n)$ or $\operatorname{USp}(n)$ irreps characterised by $\left(\lambda_{1} \ldots \lambda_{d}\right)$, and contained in an irrep $\left[h_{1} \ldots h_{d}\right]$ of $\mathrm{U}(n)$. Here $P\left(\eta_{i s}\right)$ is a polynomial in the $d n$ boson creation operators $\eta_{i s}$, and $|0\rangle$
denotes the boson vacuum state. Those hws can be obtained as the simultaneous solutions of the following two systems of equations:

$$
\begin{array}{ll}
\Lambda_{s,-s} P\left(\eta_{i s}\right)|0\rangle=\lambda_{\nu+1-s} P\left(\eta_{i s}\right)|0\rangle & s=\nu, \ldots, 1 \\
\Lambda_{s t} P\left(\eta_{i s}\right)|0\rangle=0 & s>t>-s \text { for } \mathrm{O}(n) \\
& s \geqslant t>-s \text { for } \operatorname{USp}(n) \tag{3.2b}
\end{array}
$$

and

$$
\begin{array}{ll}
C_{i i} P\left(\eta_{i s}\right)|0\rangle=h_{i} P\left(\eta_{i s}\right)|0\rangle & i=i, \ldots, d \\
C_{i j} P\left(\eta_{i s}\right)|0\rangle=0 & i<j \tag{3.3b}
\end{array}
$$

where we assume that $\lambda_{d+1}, \ldots, \lambda_{\nu}$ are all equal to zero. Equations (3.2) and (3.3) can also be interpreted in terms of the reduction of the $\operatorname{Sp}(2 d, R)$ or $\mathrm{SO}^{*}(2 d)$ irreps with respect to $\mathrm{U}(d)$. To prove this assertion, let us successively analyse the significance of both these equations.

From equation (2.6), a solution of equation (3.2) is the hws of some $O(n)$ or $\operatorname{USp}(n)$ irrep characterised by the partition $\left(\lambda_{1} \ldots \lambda_{d}\right)$. From the complementarity between $\mathrm{O}(n)$ and $\operatorname{Sp}(2 d, R)$, or $\operatorname{USp}(n)$ and $\mathrm{SO}^{*}(2 d)$, it follows that the set of all such solutions span the carrier space of an $\operatorname{Sp}(2 d, R)$ or $\mathrm{SO}^{*}(2 d)$ irrep specified by its lowest weight $\left\langle\lambda_{d}+\frac{1}{2} n, \ldots, \lambda_{1}+\frac{1}{2} n\right\rangle$. In the same way, a solution of equation (3.3) is the Hws of some $\mathrm{U}(d)$ irrep characterised by the partition [$h_{1} \ldots h_{d}$]. The complementarity between $\mathrm{U}(d)$ and $\mathrm{U}(n)$ then imposes that the set of all such solutions span the carrier space of a $\mathrm{U}(n)$ irrep specified by the same partition [$h_{1} \ldots h_{d}$].

If we now consider all the simultaneous solutions of equations (3.2) and (3.3), we can interpret them either as the hws of all the equivalent $O(n)$ or $\operatorname{USp}(n)$ irreps characterised by the same partition ($\lambda_{1} \ldots \lambda_{d}$), and contained in a $\mathrm{U}(n)$ irrep $\left[h_{1} \ldots h_{d}\right]$, or as the hws of all the equivalent $\mathrm{U}(d)$ irreps specified by the same partition [$h_{1} \ldots h_{d}$], and contained in an $\operatorname{Sp}(2 d, R)$ or $\mathrm{SO}^{*}(2 d)$ irrep $\left\langle\lambda_{d}+\frac{1}{2} n, \ldots, \lambda_{1}+\frac{1}{2} n\right\rangle$. This establishes the equivalence of the state labelling problems for the chains ($2.13 a$) and ($2.14 a$), as well as (2.13b) and (2.14b).

Consequently, the simultaneous solutions of equations (3.2) and (3.3) can be written as the kets

$$
P\left(\eta_{i s}\right)|0\rangle=\left|\begin{array}{cc}
\left(\lambda_{d}+\frac{1}{2} n, \ldots, \lambda_{1}+\frac{1}{2} n\right\rangle & {\left[h_{1} \ldots h_{d}\right]} \tag{3.4}\\
\left(\Gamma^{s}\right)\left[h_{1} \ldots h_{d}\right] ; & \left(\Gamma^{s}\right)\left(\lambda_{1} \ldots \lambda_{d}\right) \\
\max & \max
\end{array}\right|
$$

whose left-hand part characterises the irreps of the chain (2.14a) or (2.14b), and whose right-hand part specifies those of the chain (2.13a) or ($2.13 b$). Here (Γ^{s}) denotes the whole set of k missing labels, distinguishing between repeated irreps of $\mathrm{U}(d)$ contained in a given irrep of $\mathrm{Sp}(2 d, R)$ or $\mathrm{SO}^{*}(2 d)$, as well as between repeated irreps of $\mathrm{O}(n)$ or $\operatorname{USp}(n)$ contained in a given irrep of $\mathrm{U}(n)$. The number k of missing labels is respectively given by

$$
\begin{equation*}
k=\frac{1}{2} d(d-1) \tag{3.5a}
\end{equation*}
$$

for the chains (2.13a) and (2.14a), and

$$
\begin{align*}
k & =\frac{1}{2} d(d-3) & & \text { if } d \geqslant 3 \\
& =0 & & \text { if } d=1,2 \tag{3.5b}
\end{align*}
$$

for the chains (2.13b) and (2.14b).

Equations (3.5a) and (3.5b) can be established for the chains (2.13a) and (2.13b) by applying a result of Seligman and Sharp (1983). The latter states that the number of internal labels needed to specify the states of a degenerate irrep (i.e. an irrep for which one or more labels are zero) of a compact semi-simple Lie group is given by

$$
\begin{equation*}
b=\frac{1}{2}(r-l)-a \tag{3.6}
\end{equation*}
$$

where r and l are the order and the rank of the group, respectively, and a is the number of lowering generators which annihilate the irrep hws. For d-row irreps of the group $G=U(n)$, we easily find from the well known expression of their hws (Moshinsky 1963) that

$$
\begin{equation*}
b_{G}=\frac{1}{2} d(2 n-d-1) \tag{3.7}
\end{equation*}
$$

while for d-row irreps of the subgroup $\mathrm{H}=\mathrm{O}(n)$ or $\operatorname{USp}(n)$, we find from equations (2.6c) and (5.2) below that

$$
\begin{align*}
b_{\mathrm{H}} & =d(n-d-1) & & \text { for } \mathrm{O}(n) \\
& =d(n-d) & & \text { for } \operatorname{USp}(n) . \tag{3.8}
\end{align*}
$$

The number k of missing labels is then given by

$$
\begin{equation*}
k=b_{\mathrm{G}}-b_{\mathrm{H}}-\bar{d} \tag{3.9}
\end{equation*}
$$

where \bar{d} is the number of independent labels characterising the subgroup irrep ($\lambda_{1} \ldots \lambda_{d}$), and is equal to d except for $\operatorname{USp}(n)$ and $d=1,2$, for which, as a consequence of Littlewood's branching rule (3.1), it reduces to 0 and 1, respectively. Equations (3.7), (3.8) and (3.9) finally lead to equation (3.5).

In $\S 5$, we shall show how a canonical choice can be made for the k missing labels $\left(\Gamma^{s}\right)$. For such a purpose, we shall construct the whole set of simultaneous solutions of equations (3.2) and (3.3). As it will prove convenient to know the latter for the special case where the irrep of $\mathrm{O}(n)$ or $\operatorname{USp}(n)$ is the scalar one, we first study this case in detail in the next section.

4. The case of scalar representations of the orthogonal or symplectic subgroup

From Littlewood's branching rule (3.1), it results that the scalar irrep (0) of $\mathrm{O}(n)$ or $\mathrm{USp}(n)$ is contained with multiplicity one in the $\mathrm{U}(n)$ irreps $\left[h_{1} \ldots h_{d}\right.$] for which h_{1}, \ldots, h_{d} are even integers in the $\mathrm{O}(n) \mathrm{case}$, or $h_{2 i}=h_{2 i-1}, i=1, \ldots, \delta=\left[\frac{1}{2} d\right]$, and $h_{d}=0$ if d is odd, in the $\operatorname{USp}(n)$ one, and that it does not appear in the remaining irreps. We shall henceforth denote the $\mathrm{U}(n)$ irreps containing the scalar irrep of $\mathrm{O}(n)$ or $\operatorname{USp}(n)$ by the symbol $\left[h_{1}^{s} \ldots h_{d}^{s}\right]$.

Let us consider the system of equations (3.2) and (3.3), where $\lambda_{\nu+1-s}$ and h_{i} are replaced by 0 and h_{i}^{s}, respectively, and search for its single simultaneous solution. From § 3, the latter is the hws of a $\mathrm{U}(d)$ irrep $\left[h_{1}^{s} \ldots h_{d}^{s}\right.$], belonging to the carrier space of the single $\mathrm{Sp}(2 d, R)$ or $\mathrm{SO}^{*}(2 d)$ irrep $\left\langle\left(\frac{1}{2} n\right)^{d}\right\rangle$ appearing in the reduction of the $\operatorname{Sp}(2 d n, R)$ irreps. The Lws of the irrep $\left.\left\langle\frac{1}{2} n\right)^{d}\right\rangle$, i.e. the solution of equation (2.15) where λ_{d+1-i} is replaced by 0 , is the boson vacuum state $|0\rangle$. The remaining bases are generated from it by applying polynomials in the $D_{i j}^{\dagger}, E_{i j}$ and $D_{i j}$ generators. By using
the commutation relations (2.9), it is always possible to write such polynomials in the normal form, i.e. as

$$
\begin{equation*}
P\left(D_{i j}^{\dagger}\right) P^{\prime}\left(E_{i j}\right) P^{\prime \prime}\left(D_{i j}\right) \tag{4.1}
\end{equation*}
$$

where P, P^{\prime} and $P^{\prime \prime}$ are some polynomials in the indicated operators. Since the operators $D_{i j}$ annihilate the state $|0\rangle$, while the operators $E_{i j}$ reduce to the constants $\frac{1}{2} n \delta_{i j}$ when acting upon the latter, the bases of $\left\langle\left(\frac{1}{2} n\right)^{d}\right\rangle$ can be written as $P\left(D_{i j}^{\dagger}\right)|0\rangle$.

It remains to determine the polynomial $P^{s}\left(D_{i j}^{+}\right)$, which creates the hws of the $\mathrm{U}(d) \operatorname{irrep}\left[h_{1}^{s}, \ldots, h_{d}^{s}\right]$,

$$
P^{s}\left(D_{i j}^{\dagger}\right)|0\rangle=\left|\begin{array}{cc}
\left\langle\left(\frac{1}{2} n\right)^{d}\right\rangle & {\left[h_{1}^{s} \ldots h_{d}^{s}\right]} \tag{4.2}\\
{\left[h_{1}^{s} \ldots h_{d}^{s}\right] ;} & (0) \\
\max &
\end{array}\right\rangle
$$

In equation (4.2), no additional labels (Γ^{s}) are needed. The explicit form of $P^{s}\left(D_{i j}^{\dagger}\right)$ can be found by solving equation (3.3), where h_{i} is replaced by h_{i}^{s}, and $P\left(\eta_{i s}\right)$ by $P^{s}\left(D_{i j}^{\dagger}\right)$. This is most easily done by applying the method of elementary permissible diagrams (EPD) (Moshinsky and Syamala Devi 1969, Sharp and Lam 1969).

In the $\mathrm{O}(n)$ case, there are d EPD, corresponding to the $\mathrm{U}(n)$ irreps $\left[2^{i}\right], i=1, \ldots, d$, respectively. Their hws can be written as

$$
\begin{equation*}
D_{12 \ldots, 12 \ldots i}^{\dagger}=\sum_{p}(-1)^{p} D_{1, p(1)}^{\dagger} D_{2, p(2)}^{\dagger} \ldots D_{i, p(i)}^{\dagger} \tag{4.3}
\end{equation*}
$$

where the summation is carried out over the i ! permutations of the indices $1,2, \ldots, i$. In terms of them, the polynomial $P^{s}\left(D_{i j}^{+}\right)$reads (Deenen and Quesne 1982)

$$
\begin{equation*}
P^{s}\left(D_{i j}^{\dagger}\right)=\prod_{i=1}^{d}\left(D_{12 \ldots, \ldots, 12 \ldots i}^{\dagger}\right)^{\left(h_{1}-h_{1+1}\right) / 2} \tag{4.4}
\end{equation*}
$$

where h_{d+1} is assumed to be equal to zero.
In the $\operatorname{USp}(n)$ case, there are δ EPD, corresponding to the $\mathrm{U}(n)$ irreps [$1^{2 i}$], $i=1, \ldots, \delta$, respectively. Their hws are given by

$$
\begin{equation*}
D_{12 \ldots 2 i-12 i}^{\dagger}=\sum_{p}(-1)^{p} D_{p(1), p(2)}^{\dagger} \ldots D_{p(2 i-1), p(2 i)}^{\dagger} \tag{4.5}
\end{equation*}
$$

where the summation is carried out over the $\left[2^{i} i!\right]^{-1}(2 i)!=(2 i-1)!!$ permutations of the indices $1, \ldots, 2 i$, which exchange neither the indices of the same D^{\dagger} operator nor the pairs of indices of two such operators. For $i=4$, for instance, equation (4.5) reads

$$
\begin{equation*}
D_{1234}^{\dagger}=D_{12}^{\dagger} D_{34}^{\dagger}-D_{13}^{\dagger} D_{24}^{\dagger}+D_{14}^{\dagger} D_{23}^{\dagger} . \tag{4.6}
\end{equation*}
$$

The polynomial $P^{s}\left(D_{i j}^{\dagger}\right)$ can then be written as

$$
\begin{equation*}
P^{s}\left(D_{i j}^{\dagger}\right)=\prod_{i=1}^{\delta}\left(D_{12 \ldots 2 i-12 i}^{\dagger}\right)^{h_{2 t-1}-h_{2 i+1}} \tag{4.7}
\end{equation*}
$$

where h_{d+1} is again assumed to be equal to zero.
Having solved equations (3.2) and (3.3) for the special case of $\mathrm{O}(n)$ or $\operatorname{USp}(n)$ scalar irreps, we shall now proceed to the general case in the next section.

5. The general case

Let us consider equations (3.2) and (3.3), where h_{1}, \ldots, h_{d}, and $\lambda_{1}, \ldots, \lambda_{d}$ now assume arbitrary values compatible with Littlewood's branching rule (3.1). From §3, their simultaneous solutions are the hws of the equivalent $U(d)$ irreps, characterised by the same partition [$h_{1} \ldots h_{d}$], and belonging to a given $\operatorname{Sp}(2 d, R)$ or $\mathrm{SO}^{*}(2 d)$ irrep $\left(\lambda_{d}+\right.$ $\left.\frac{1}{2} n, \ldots, \lambda_{1}+\frac{1}{2} n\right\rangle$, namely that made of $\mathrm{O}(n)$ or $\operatorname{USp}(n)$ hws. Let us therefore first construct the carrier space of the latter, and then search for the $U(d)$ hws it contains.

The Lws of the $\operatorname{Sp}(2 d, R)$ or $\mathrm{SO}^{*}(2 d)$ irrep $\left\langle\lambda_{d}+\frac{1}{2} n, \ldots, \lambda_{1}+\frac{1}{2} n\right\rangle$, made of $\mathrm{O}(n)$ or $\operatorname{USp}(n)$ Hws, is the simultaneous solution of equations (2.15) and (3.2). In the notations of equation (3.4), it can be written as

$$
\left.\bar{P}\left(\eta_{i s}\right)|0\rangle=\left\lvert\, \begin{array}{cc}
\left\langle\lambda_{d}+\frac{1}{2} n, \ldots, \lambda_{1}+\frac{1}{2} n\right\rangle & {\left[\lambda_{1} \ldots \lambda_{d}\right]} \tag{5.1}\\
{\left[\lambda_{1} \ldots \lambda_{d}\right]} & ;
\end{array}\left(\lambda_{1} \ldots \lambda_{d}\right)\right.\right\}
$$

where no additional labels (Γ^{s}) are needed. The explicit form of $\bar{P}\left(\eta_{i s}\right)$ is easily found to be

$$
\begin{equation*}
\bar{P}\left(\eta_{i s}\right)=\prod_{i=1}^{d}\left(\eta_{d-i+1 \ldots d,-\nu+i-1 \ldots-\nu}\right)^{\lambda_{1}-\lambda_{1+1}} . \tag{5.2}
\end{equation*}
$$

In equation (5.2), $\eta_{d-i+1 \ldots d,-\nu+i-1 \ldots-\nu}$ is defined by

$$
\begin{equation*}
\eta_{d-i+1 \ldots d,-\nu+i-1 \ldots-\nu}=\sum_{p}(-1)^{p} \eta_{d-i+1, p(-\nu+i-1)} \ldots \eta_{d, p(-\nu)} \tag{5.3}
\end{equation*}
$$

where the summation is carried out over the i ! permutations of the indices $-\nu+i-$ $1, \ldots,-\nu$.

From the lws (5.1), we can generate all the bases of the irrep $\left\langle\lambda_{d}+\frac{1}{2} n, \ldots, \lambda_{1}+\frac{1}{2} n\right\rangle$ by applying polynomials of the form given in equation (4.1). In this equation, we can eliminate $P^{\prime \prime}\left(D_{i j}\right)$ since the operators $D_{i j}$ annihilate the Lws. Moreover, the action of all the polynomials $P^{\prime}\left(E_{i j}\right)$ upon the latter generates the carrier space of the $\mathrm{U}(d)$ irrep $\left[\lambda_{1} \ldots \lambda_{d}\right]$. It is possible to choose $P^{\prime}\left(E_{i j}\right)$ in such a way that the resulting state transforms irreducibly under the canonical chain $\mathrm{U}(d) \supset \mathrm{U}(d-1) \supset \ldots \supset \mathrm{U}(1)$, and is characterised by a Gel'fand pattern (λ) (Gel'fand and Tseitlin 1950, Baird and Biedenharn 1963, Moshinsky 1963). In the notation of equation (3.4), such a state can be written as

$$
\bar{P}_{(\lambda)}\left(\eta_{i s}\right)|0\rangle=\left\lvert\, \begin{array}{cc}
\left\langle\lambda_{d}+\frac{1}{2} n, \ldots, \lambda_{1}+\frac{1}{2} n\right\rangle & {\left[\lambda_{1} \ldots \lambda_{d}\right]} \tag{5.4}\\
{\left[\lambda_{1} \ldots \lambda_{d}\right]} & ;
\end{array}\left(\lambda_{1} \ldots \lambda_{d}\right) .\right.
$$

In practice the explicit form of $\bar{P}_{(\lambda)}\left(\eta_{i s}\right)$ can be found by applying appropriate $\mathrm{U}(\boldsymbol{d})$, $\mathrm{U}(d-1), \ldots, \mathrm{U}(2)$ raising operators (Nagel and Moshinsky 1965) to the state (5.1). Finally, all the bases of the irrep $\left\langle\lambda_{d}+\frac{1}{2} n, \ldots, \lambda_{1}+\frac{1}{2} n\right\rangle$ are obtained from the set of states (5.4) by applying all possible polynomials $P\left(D_{i j}^{+}\right)$.

It remains to find the hws of all the equivalent $U(d)$ irreps, characterised by the same partition [$h_{1} \ldots h_{d}$], in the carrier space of the irrep $\left\langle\lambda_{d}+\frac{1}{2} n, \ldots, \lambda_{1}+\frac{1}{2} n\right\rangle$. They are obtained by solving equation (3.3), where $P\left(\eta_{i s}\right)$ is a linear combination of the $\left\langle\lambda_{d}+\frac{1}{2} n, \ldots, \lambda_{1}+\frac{1}{2} n\right\rangle$ bases we have just constructed. Since the states (5.4) already transform irreducibly under $\mathrm{U}(d)$, let us classify the polynomials $P\left(D_{i j}^{+}\right)$according to $\mathrm{U}(d)$ irreps. From $\S 4$, we know that, when applied to the boson vacuum state, the
set of all polynomials $P\left(D_{i j}^{\dagger}\right)$ gives rise to the bases of the $\operatorname{Sp}(2 d, R)$ or $\mathrm{SO}^{*}(2 d)$ irrep $\left\langle\left(\frac{1}{2} n\right)^{d}\right\rangle$. A set of linearly independent polynomials in $D_{i j}^{+}$can therefore be obtained by considering all allowed values of $h_{1}^{s}, \ldots, h_{d}^{s}$, as specified in $\S 4$, and all Gel'fand patterns (h^{s}) corresponding to [$h_{1}^{s} \ldots h_{d}^{s}$]. In the notations of equation (3.4), the corresponding states can be written as

$$
P_{\left(h^{s}\right)}^{s}\left(D_{i j}^{+}\right)|0\rangle=\left|\begin{array}{cc}
\left\langle\left(\frac{1}{2} n\right)^{d}\right\rangle & {\left[h_{1}^{s} \ldots h_{d}^{s}\right]} \tag{5.5}\\
{\left[h_{1}^{s} \ldots h_{d}^{s}\right] ;} & (0) \\
\left(h^{s}\right) &
\end{array}\right\rangle
$$

The explicit form of $P_{\left(h^{s}\right)}^{s}\left(D_{i j}^{\dagger}\right)$ can be found by applying appropriate lowering operators (Nagel and Moshinsky 1965) to the Hws, given in equations (4.4) and (4.7).

It is now straightforward to obtain all the solutions (3.4) of equation (3.3). For such a purpose, we just have to couple the polynomials $\bar{P}_{(\lambda)}\left(\eta_{i s}\right)$ and $P_{\left(h^{s}\right)}^{s}\left(D_{i j}^{+}\right)$to a definite irrep $\left[h_{1} \ldots h_{d}\right.$] of $\mathrm{U}(d)$ by means of appropriate $\mathrm{U}(d)$ Wigner coefficients, as follows:

In equation (5.6), we use Biedenharn's canonical characterisation of the $U(d)$ Wigner coefficients by means of operator patterns (γ^{s}) (Biedenharn et al 1967). By this procedure, we identify the set of missing labels (Γ^{s}) with the irrep labels $h_{1}^{s}, \ldots, h_{d}^{s}$, and the operator patterns $\left(\gamma^{s}\right)$, i.e.

$$
\begin{equation*}
\left(\Gamma^{s}\right)=\binom{\left(\gamma^{s}\right)}{\left[h_{1}^{s} \ldots h_{d}^{s}\right]} . \tag{5.7}
\end{equation*}
$$

Since the partitions [$h_{1}^{s} \ldots h_{d}^{s}$] are those appearing in Littlewood's branching rule (3.1), and moreover (γ^{s}) solves the state labelling problem for the product $\left[\lambda_{1} \ldots \lambda_{d}\right] \times$ [$h_{1}^{s} \ldots h_{d}^{s}$] of $\mathrm{U}(d)$ irreps, the number of the states (5.6), corresponding to all possible $\left(\Gamma^{s}\right)$, agrees with that predicted by Littlewood's branching rule. We have therefore found all the simultaneous solutions of equations (3.2) and (3.3) by reducing the internal state labelling problem for $\mathrm{U}(n) \supset \mathrm{O}(n)$ or $\mathrm{USp}(n)$ to the external state labelling problem for $\mathrm{U}(d)$.

As a final check, let us show that the definition (5.7) of (Γ^{s}) provides us with the right number k of additional labels, as given in equation (3.5). In equation (5.7), the total number of labels $\Gamma_{j i}^{s}, i \leqslant j \leqslant i \leqslant d$, is equal to $\frac{1}{2} d(d+1)$; however, they are linked by the d relations

$$
\begin{equation*}
\sum_{j=1}^{i} \Gamma_{j i}^{s}-\sum_{j=1}^{i-1} \Gamma_{j i-1}^{s}=h_{i}-\lambda_{i} \quad i=1, \ldots, d \tag{5.8}
\end{equation*}
$$

In the $\mathrm{O}(n)$ case, there are no other relations among the $\Gamma_{j i}^{s}$, so that the number of independent labels is given by $\frac{1}{2} d(d-1)$, as predicted by equation (3.5a). In the $\mathrm{USp}(n)$ case, however, for $d \geqslant 3$ there are d additional relations among the $\Gamma_{j i}^{s}$, namely the conditions

$$
\begin{array}{ll}
h_{2 i}^{s}=h_{2 i-1}^{s} & i=1, \ldots, \delta \\
h_{d}^{s}=0 & \text { if } d \text { is odd } \tag{5.9}
\end{array}
$$

resulting from the definition of [$h_{1}^{s} \ldots h_{d}^{s}$], and the relations

$$
\begin{equation*}
\gamma_{2 i-1, d-1}^{s}=h_{2 i-1}^{s} \quad i=1, \ldots, \delta \tag{5.10}
\end{equation*}
$$

following from the triangular inequalities satisfied by operator patterns (Biedenharn et al 1967); the number of independent labels $\Gamma_{j i}^{s}$ is therefore given by $\frac{1}{2} d(d-3)$, in agreement with equation ($3.5 b$). For $d=1$ or 2 , a similar count also leads to equation (3.5b).

In conclusion, we have proved that the previously proposed canonical solution of the state labelling problem for $\mathrm{U}(n) \supset \mathrm{O}(n)$ (Deenen and Quesne 1983, Quesne 1984) can indeed be extended to $\mathrm{U}(n) \supset \operatorname{USp}(n)$, provided we switch from the metric $g=I$, specific to $\mathrm{O}(n)$, to the unified metric (2.1), and replace the complementary chain $\mathrm{Sp}(2 d, R) \supset \mathrm{U}(d)$ by the corresponding chain $\mathrm{SO}^{*}(2 d) \supset \mathrm{U}(d)$.

References

Baird G E and Biedenharn L C 1963 J. Math. Phys. 41449
Biedenharn L C, Giovannini A and Louck J D 1967 J. Math. Phys. 8691
Deenen J and Quesne C 1982 J. Math. Phys. 232004

- 1983 J. Phys. A: Math. Gen. 162095

Gelbart S 1979 Proc. Symp. Pure Mathematics (Am. Math. Soc.) 33287
Gel'fand I M and Tseitlin M L 1950 Dokl. Akad. Nauk SSR 71825
Gross K and Kunze R 1977 J. Funct. Anal. 251
Howe R 1979 Proc. Symp. Pure Mathematics (Am. Math. Soc.) 33275
Kashiwara M and Vergne M 1978 Invent. Math. 441
King R C 1975 J. Phys. A: Math. Gen. 8429
Littlewood D E 1950 The Theory of Group Characters (Oxford: Clarendon)
Moshinsky M 1963 J. Math. Phys. 41128
Moshinsky M and Quesne C 1970 J. Math. Phys. 111631

- 1971 J. Math. Phys. 121772

Moshinsky M and Syamala Devi V 1969 J. Math. Phys. 10455
Newell M J 1951 Proc. R. Irish Acad. 54A 143, 153
Quesne C 1984 J. Phys. A: Math. Gen. 17 777, 791

- 1985 J. Phys. A: Math. Gen. 181167

Seligman T H and Sharp R T 1983 J. Math. Phys. 24769
Sharp R T and Lam C S 1969 J. Math. Phys. 102033

[^0]: \dagger In fact, the $\mathrm{U}(n)$ and $\mathrm{U}(d)$ subgroups of $\mathrm{Sp}(2 d n, R)$ are respectively generated by the operators $E_{s t}=$ $\frac{1}{2} \sum_{i=1}^{d}\left(\eta_{i s} \xi_{i t}+\xi_{i t} \eta_{i s}\right)$, and $E_{i j}$ which only differ from $C_{s t}$ and $C_{i j}$ in some irrelevant constants, $\frac{1}{2} d \delta_{s t}$ and $\frac{1}{2} n \delta_{i j}$

